差分GPS
瀏覽量:0發布時間:2023-02-25 14:13:52
差分GPS(differential GPS-DGPS,DGPS)是首先利用已知精確三維坐標的差分GPS基準臺,求得偽距修正量或位置修正量,再將這個修正量實時或事后發送給用戶(GPS導航儀),對用戶的測量數據進行修正,以提高GPS定位精度。
差分GPS分為單基準站差分、多基準站的局部區域差分和廣域差分三種類型。從差分所用的信號信息,可分為碼相位和載波相位。
分類
根據差分GPS基準站發送的信息方式可將差分GPS定位分為三類,即:位置差分、偽距差分和相位差分。
差分GPS (DGPS)是在正常的GPS外附加(差分)修正信號,此改正信號改善了GPS的精度。
這三類差分方式的工作原理是相同的,即都是由基準站發送改正數,由用戶站接收并對其測量結果進行改正,以獲得精確的定位結果。所不同的是,發送改正數的具體內容不一樣,其差分定位精度也不同。
原理
位置差分原理
這是一種最簡單的差分方法,任何一種GPS接收機均可改裝和組成這種差分系統。
安裝在基準站上的GPS接收機觀測4顆衛星后便可進行三維定位,解算出基準站的坐標。由于存在著軌道誤差、時鐘誤差、SA影響、大氣影響、多徑效應以及其他誤差,解算出的坐標與基準站的已知坐標是不一樣的, 存在誤差。基準站利用數據鏈將此改正數發送出去,由用戶站接收,并且對其解算的用戶站坐標進行改正。
最后得到的改正后的用戶坐標已消去了基準站和用戶站的共同誤差,例如衛星軌道誤差、 SA影響、大氣影響等,提高了定位精度。以上先決條件是基準站和用戶站觀測同一組衛星的情況。位置差分法適用于用戶與基準站間距離在100km以內的情況。
偽距差分原理
偽距差分是用途最廣的一種技術。幾乎所有的商用差分GPS接收機均采用這種技術。國際海事無線電委員會推薦的RTCM SC-104也采用了這種技術。
在基準站上的接收機要求得它至可見衛星的距離,并將此計算出的距離與含有誤差的測量值 加以比較。利用一個α-β濾波器將此差值濾波并求出其偏差。然后將所有衛星的測距誤差傳輸給用戶,用戶利用此測距誤差來改正測量的偽距。最后,用戶利用改正后的偽距來解出本身的位置, 就可消去公共誤差,提高定位精度。
與位置差分相似,偽距差分能將兩站公共誤差抵消,但隨著用戶到基準站距離的增加又 出現了系統誤差,這種誤差用任何差分法都是不能消除的。用戶和基準站之間的距離對精度有決定性影響。
載波相位差分原理
測地型接收機利用GPS衛星載波相位進行的靜態基線測量獲得了很高的精度(10-6~10-8)。但為了可靠地求解出相位模糊度,要求靜止觀測一兩個小時或更長時間。這樣就限制了在工程作業中的應用。于是探求快速測量的方法應運而生。例如,采用整周模糊度快速逼近技術(FARA)使基線觀測 時間縮短到5分鐘,采用準動態(stop and go),往返重復設站(re-occupation)和動態(kinematic)來提高GPS作業效率。這些技術的應用對推動精密GPS測量起了促進作用。但是,上述這些作業方式都是事后進行數據處理, 不能實時提交成果和實時評定成果質量,很難避免出現事后檢查不合格造成的返工現象。
差分GPS的出現,能實時給定載體的位置,精度為米級,滿足了引航、水下測量等工程的要求。位置差分、偽距差分、 偽距差分相位平滑等技術已成功地用于各種作業中。隨之而來的是更加精密的測量技術— 載波相位差分技術。
載波相位差分技術又稱為RTK技術(real time kinematic),是建立在實時處理兩個測站的載波相位基礎上的。它能實時提供觀測點的三維坐標,并達到厘米級的高精度。
與偽距差分原理相同,由基準站通過數據鏈實時將其載波觀測量及站坐標信息一同傳送給用戶站。用戶站接收GPS衛星的載波相位 與來自基準站的載波相位,并組成相位差分觀測值進行實時處理,能實時給出厘米級的定位結果。
實現載波相位差分GPS的方法分為兩類:修正法和差分法。前者與偽距差分相同,基準站將載波相位修正量發送給用戶站,以改正其載波相位,然后求解坐標。后者將基準站采集的載波相位發送給 用戶臺進行求差解算坐標。前者為準RTK技術,后者為真正的RTK技術。
算法
GPS定位是利用一組衛星的偽距、星歷、衛星發射時間等觀測量和用戶鐘差來實現的。要獲得地面的三維坐標,必須對至少4顆衛星進行測量。在這一定位過程中,存在3部分誤差:
第一部分誤差是由衛星鐘誤差、星歷誤差、電離層誤差、對流層誤差等引起的;
第二部分是由傳播延遲導致的誤差;
第三部分為各用戶接收機固有的誤差,由內部噪聲、通道延遲、多路徑效應等原因造成。
利用差分技術,第一部分誤差可以完全消除;第二部分誤差大部分可以消除,消除程度主要取決于基準接收機和用戶接收機的距離;第三部分誤差則無法消除。
下面,我們主要介紹消除由于電離層延遲和對流層延遲引起的誤差的算法。在算法中使用的時間系統為GPS時,坐標系統為WGS-84坐標系。
1.消除電離層誤差的算法
2.衛星位置的計算
功能
基本功能
1.精確定時:廣泛應用在天文臺、通信系統基站、電視臺中
2.工程施工:道路、橋梁、隧道的施工中大量采用GPS設備進行工程測量
3.勘探測繪:野外勘探及城區規劃中都有用到
導航
1.武器導航:精確制導導彈、巡航導彈
2.車輛導航:車輛調度、監控系統
3.船舶導航:遠洋導航、港口/內河引水
4.飛機導航:航線導航、進場著陸控制
5.星際導航:衛星軌道定位
6.個人導航:個人旅游及野外探險
定位
車輛防盜系統
手機,PDA,PPC等通信移動設備防盜,電子地圖,定位系統
兒童及特殊人群的防走失系統
精準農業:農機具導航、自動駕駛,土地高精度平整
特點
第一,全天候,不受任何天氣的影響
第二,全球覆蓋(高達98%)
第三,三維定點定速定時高精度
第四,快速、省時、高效率
第五,應用廣泛、多功能
第六,可移動定位。
正在運行的全球衛星定位系統有美國的GPS系統和俄羅斯的GLONASS系統。
歐盟1999年初正式推出“伽利略”計劃,部署新一代定位衛星。該方案由27顆運行衛星和3顆預備衛星組成,可以覆蓋全球,位置精度達幾米,亦可與美國的GPS系統兼容,總投資為35億歐元。該計劃預計于2010年投入運行。
中國還獨立研制了一個區域性的衛星定位系統——北斗導航系統。該系統的覆蓋范圍限于中國及周邊地區,不能在全球范圍提供服務,主要用于軍事用途。
前景
由于GPS技術所具有的全天候、高精度和自動測量的特點,作為先進的測量手段和新的生產力,已經融入了國民經濟建設、國防建設和社會發展的各個應用領域。 隨著冷戰結束和全球經濟的蓬勃發展,美國政府宣布2000年至2006年期間,在保證美國國家安全不受威脅的前提下,取消SA政策,GPS民用信號精度在全球范圍內得到改善,利用C/A碼進行單點定位的精度由100米提高到10米,這將進一步推動GPS技術的應用,提高生產力、作業效率、科學水平以及人們的生活質量,刺激GPS市場的增長。據有關專家預測,在美國,單單是汽車GPS導航系統,2000年后的市場將達到30億美元,而在中國,汽車導航的市場也將達到50億元人民幣。可見,GPS技術市場的應用前景非常可觀。
選擇技巧
選擇導航技巧一:選擇正規大廠出品
選擇導航技巧二:軟件升級很重要
選擇導航技巧三:信號接收能力需要好的芯片
差分GPS分為單基準站差分、多基準站的局部區域差分和廣域差分三種類型。從差分所用的信號信息,可分為碼相位和載波相位。
分類
根據差分GPS基準站發送的信息方式可將差分GPS定位分為三類,即:位置差分、偽距差分和相位差分。
差分GPS (DGPS)是在正常的GPS外附加(差分)修正信號,此改正信號改善了GPS的精度。
這三類差分方式的工作原理是相同的,即都是由基準站發送改正數,由用戶站接收并對其測量結果進行改正,以獲得精確的定位結果。所不同的是,發送改正數的具體內容不一樣,其差分定位精度也不同。
原理
位置差分原理
這是一種最簡單的差分方法,任何一種GPS接收機均可改裝和組成這種差分系統。
安裝在基準站上的GPS接收機觀測4顆衛星后便可進行三維定位,解算出基準站的坐標。由于存在著軌道誤差、時鐘誤差、SA影響、大氣影響、多徑效應以及其他誤差,解算出的坐標與基準站的已知坐標是不一樣的, 存在誤差。基準站利用數據鏈將此改正數發送出去,由用戶站接收,并且對其解算的用戶站坐標進行改正。
最后得到的改正后的用戶坐標已消去了基準站和用戶站的共同誤差,例如衛星軌道誤差、 SA影響、大氣影響等,提高了定位精度。以上先決條件是基準站和用戶站觀測同一組衛星的情況。位置差分法適用于用戶與基準站間距離在100km以內的情況。
偽距差分原理
偽距差分是用途最廣的一種技術。幾乎所有的商用差分GPS接收機均采用這種技術。國際海事無線電委員會推薦的RTCM SC-104也采用了這種技術。
在基準站上的接收機要求得它至可見衛星的距離,并將此計算出的距離與含有誤差的測量值 加以比較。利用一個α-β濾波器將此差值濾波并求出其偏差。然后將所有衛星的測距誤差傳輸給用戶,用戶利用此測距誤差來改正測量的偽距。最后,用戶利用改正后的偽距來解出本身的位置, 就可消去公共誤差,提高定位精度。
與位置差分相似,偽距差分能將兩站公共誤差抵消,但隨著用戶到基準站距離的增加又 出現了系統誤差,這種誤差用任何差分法都是不能消除的。用戶和基準站之間的距離對精度有決定性影響。
載波相位差分原理
測地型接收機利用GPS衛星載波相位進行的靜態基線測量獲得了很高的精度(10-6~10-8)。但為了可靠地求解出相位模糊度,要求靜止觀測一兩個小時或更長時間。這樣就限制了在工程作業中的應用。于是探求快速測量的方法應運而生。例如,采用整周模糊度快速逼近技術(FARA)使基線觀測 時間縮短到5分鐘,采用準動態(stop and go),往返重復設站(re-occupation)和動態(kinematic)來提高GPS作業效率。這些技術的應用對推動精密GPS測量起了促進作用。但是,上述這些作業方式都是事后進行數據處理, 不能實時提交成果和實時評定成果質量,很難避免出現事后檢查不合格造成的返工現象。
差分GPS的出現,能實時給定載體的位置,精度為米級,滿足了引航、水下測量等工程的要求。位置差分、偽距差分、 偽距差分相位平滑等技術已成功地用于各種作業中。隨之而來的是更加精密的測量技術— 載波相位差分技術。
載波相位差分技術又稱為RTK技術(real time kinematic),是建立在實時處理兩個測站的載波相位基礎上的。它能實時提供觀測點的三維坐標,并達到厘米級的高精度。
與偽距差分原理相同,由基準站通過數據鏈實時將其載波觀測量及站坐標信息一同傳送給用戶站。用戶站接收GPS衛星的載波相位 與來自基準站的載波相位,并組成相位差分觀測值進行實時處理,能實時給出厘米級的定位結果。
實現載波相位差分GPS的方法分為兩類:修正法和差分法。前者與偽距差分相同,基準站將載波相位修正量發送給用戶站,以改正其載波相位,然后求解坐標。后者將基準站采集的載波相位發送給 用戶臺進行求差解算坐標。前者為準RTK技術,后者為真正的RTK技術。
算法
GPS定位是利用一組衛星的偽距、星歷、衛星發射時間等觀測量和用戶鐘差來實現的。要獲得地面的三維坐標,必須對至少4顆衛星進行測量。在這一定位過程中,存在3部分誤差:
第一部分誤差是由衛星鐘誤差、星歷誤差、電離層誤差、對流層誤差等引起的;
第二部分是由傳播延遲導致的誤差;
第三部分為各用戶接收機固有的誤差,由內部噪聲、通道延遲、多路徑效應等原因造成。
利用差分技術,第一部分誤差可以完全消除;第二部分誤差大部分可以消除,消除程度主要取決于基準接收機和用戶接收機的距離;第三部分誤差則無法消除。
下面,我們主要介紹消除由于電離層延遲和對流層延遲引起的誤差的算法。在算法中使用的時間系統為GPS時,坐標系統為WGS-84坐標系。
1.消除電離層誤差的算法
2.衛星位置的計算
功能
基本功能
1.精確定時:廣泛應用在天文臺、通信系統基站、電視臺中
2.工程施工:道路、橋梁、隧道的施工中大量采用GPS設備進行工程測量
3.勘探測繪:野外勘探及城區規劃中都有用到
導航
1.武器導航:精確制導導彈、巡航導彈
2.車輛導航:車輛調度、監控系統
3.船舶導航:遠洋導航、港口/內河引水
4.飛機導航:航線導航、進場著陸控制
5.星際導航:衛星軌道定位
6.個人導航:個人旅游及野外探險
定位
車輛防盜系統
手機,PDA,PPC等通信移動設備防盜,電子地圖,定位系統
兒童及特殊人群的防走失系統
精準農業:農機具導航、自動駕駛,土地高精度平整
特點
第一,全天候,不受任何天氣的影響
第二,全球覆蓋(高達98%)
第三,三維定點定速定時高精度
第四,快速、省時、高效率
第五,應用廣泛、多功能
第六,可移動定位。
正在運行的全球衛星定位系統有美國的GPS系統和俄羅斯的GLONASS系統。
歐盟1999年初正式推出“伽利略”計劃,部署新一代定位衛星。該方案由27顆運行衛星和3顆預備衛星組成,可以覆蓋全球,位置精度達幾米,亦可與美國的GPS系統兼容,總投資為35億歐元。該計劃預計于2010年投入運行。
中國還獨立研制了一個區域性的衛星定位系統——北斗導航系統。該系統的覆蓋范圍限于中國及周邊地區,不能在全球范圍提供服務,主要用于軍事用途。
前景
由于GPS技術所具有的全天候、高精度和自動測量的特點,作為先進的測量手段和新的生產力,已經融入了國民經濟建設、國防建設和社會發展的各個應用領域。 隨著冷戰結束和全球經濟的蓬勃發展,美國政府宣布2000年至2006年期間,在保證美國國家安全不受威脅的前提下,取消SA政策,GPS民用信號精度在全球范圍內得到改善,利用C/A碼進行單點定位的精度由100米提高到10米,這將進一步推動GPS技術的應用,提高生產力、作業效率、科學水平以及人們的生活質量,刺激GPS市場的增長。據有關專家預測,在美國,單單是汽車GPS導航系統,2000年后的市場將達到30億美元,而在中國,汽車導航的市場也將達到50億元人民幣。可見,GPS技術市場的應用前景非常可觀。
選擇技巧
選擇導航技巧一:選擇正規大廠出品
選擇導航技巧二:軟件升級很重要
選擇導航技巧三:信號接收能力需要好的芯片